Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.016
Filtrar
1.
Dent Mater ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580561

RESUMO

OBJECTIVES: Lithium silicate-based glass ceramics have evolved as a paramount restorative material in restorative and prosthetic dentistry, exhibiting outstanding esthetic and mechanical performance. Along with subtractive machining techniques, this material class has conquered the market and satisfied the patients' needs for a long-lasting, excellent, and metal-free alternative for single tooth replacements and even smaller bridgework. Despite the popularity, not much is known about the material chemistry, microstructure and terminal behaviour. METHODS: This article combines a set of own experimental data with extensive review of data from literature and other resources. Starting at manufacturer claims on unique selling propositions, properties, and microstructural features, the aim is to validate those claims, based on glass science. Deep knowledge is mandatory for understanding the microstructure evolution during the glass ceramic process. RESULTS: Fundamental glass characteristics have been addressed, leading to formation of time-temperature-transformation (TTT) diagrams, which are the basis for kinetic description of the glass ceramic process. Nucleation and crystallization kinetics are outlined in this contribution as well as analytical methods to describe the crystalline fraction and composition qualitatively and quantitatively. In relation to microstructure, the mechanical performance of lithium silicate-based glass ceramics has been investigated with focus on fracture strength versus fracture toughness as relevant clinical predictors. CONCLUSION: Fracture toughness has been found to be a stronger link to initially outlined manufacturer claims, and to more precisely match ISO recommendations for clinical indications.

2.
J Dent Sci ; 19(2): 945-951, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618100

RESUMO

Background/Purpose: In vat photopolymerization, post-polymerization of the three-dimensional (3D) printing resin is necessary to ensure the optimum physical properties of the printed objects. This study aimed to evaluate the potential use of a handheld polywave light-emitting diode (LED) dental light-curing unit (LCU) for post-polymerizing 3D printed resins by measuring the microhardness and biaxial flexural strength of the post-polymerized resin. Material and methods: 3D printed 1- and 2-mm-thick disks were irradiated with a dental LCU at 3200 mW/cm2. Post-polymerization was repeated either on one side from the top surface: two cycles (T2), four cycles (T4), and eight cycles (T8), or on both sides from the top and bottom surfaces: one cycle (T1B1), two cycles (T2B2), and four cycles (T4B4) for each side. The microhardness and biaxial strength of the disks were compared to those post-polymerized by a conventional desktop polymerizing unit (PC) and those without post-polymerization (NC). Results: Microhardness of the disks varied between the top and bottom surfaces of the 1-mm and 2-mm-thick disks, depending on the post-polymerization methods. T8 and T4B4 produced comparable microhardness on the top surface to PC for both thicknesses. In contrast, PC, T2B2, and T4B4 exhibited the highest microhardness on the bottom surface. Except for NC, the 1-mm-thick disks had a higher biaxial flexural strength than the 2-mm-thick disks. T4B4 resulted in the highest biaxial flexural strength for both thicknesses, which was comparable to that of the desktop polymerizing unit. Conclusion: The microhardness and biaxial flexural strengths of the post-polymerized 3D-printed disks increase with polymerization time. With sufficient polymerization from both sides, the polywave LCU has the potential to be a viable alternative to desktop polymerization units.

3.
J Dent Sci ; 19(2): 1061-1069, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618108

RESUMO

Background/purpose: Resin-modified glass ionomers (RMGIs) have been recommended as liner and cement to provide the teeth with mechanical support, a chemical barrier, and thermal insulation. Acemannan, the main polysaccharide extracted from Aloe vera, is a promising inductive material in vitro and in vivo. This study aimed to develop acemannan-containing bioactive resin-modified glass ionomers (RMGIs). Materials and methods: Acemannan (3%, 5%, and 10%) was added to the three types of RMGIs (RU-HBM1/Fuji II LC/Vitrebond) to generate 3%, 5%, and 10% aceRMGIs (aceRU/aceFuji/aceVB). The materials were evaluated for depth of cure/flexural strength/cumulative fluoride ion release. Cell viability and vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) secretion were determined using MTT/apoptosis/necrosis assays, and ELISA kits, respectively. RMGI without acemannan were used as controls. Results: The aceRMGIs met the ISO requirements for depth of cure and flexural strength. Adding 10% acemannan increased the cumulative fluoride release in the RU and FJ groups, but slightly decreased it in the VB group (P < 0.05). The MTT assay revealed 10% aceRU and all aceFJ groups significantly increased cell viability compared with each control group (P < 0.05). Apoptosis/necrosis assay showed the biocompatibility of all aceRMGIs. Adding acemannan to RMGIs significantly induced VEGF expression in a dose dependent manner while 5% and 10% aceRU significantly induced BMP-2 expression compared with RU group (P < 0.05). Conclusion: We conclude that 5-10% acemannan in RMGI is the optimal concentration based on its physical properties and ability to induce pulp cell proliferation and growth factor secretion.

4.
Heliyon ; 10(8): e29381, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38638943

RESUMO

Plastic waste disposal has escalated into a serious global concern due to the non-biodegradable nature of plastics, which are composed of high-molecular-mass organic polymers along with other ingredients. Therefore, this study focuses on reusing and recycling LDPE plastic waste as a binding agent in paver tile production. This aligns with global sustainability goals by promoting resource efficiency and reducing waste generation. The investigation aims to address the environmental impact of plastic waste by finding sustainable solutions for its management. This includes exploring the feasibility and viability of using LDPE plastic waste in paver tile production as a means of recycling and reusing locally collected waste. The LDPE waste plastic collection, identification, milling, and melting at 170 °C. Subsequently, the sampled sand, sieved to a size of ≤0.75 mm, was blended with molten plastic in a specified proportion and then molded to create paving tiles using a hydraulic press machine. The researchers utilized response surface methodology (RSM) combined with Box-Benken designs (BBD) to optimize three key experimental parameters (plastic-to-sand ratio: 10 %, 25 %, 40 %; time: 2, 5, 8 min, pressure: 1, 3, 5 MPa) influencing mechanical properties of paver tiles, including water absorption (WA), flexural strength (FS), and compressive strength (CS). The result revealed that the optimal combination of 25 % waste plastic, 5 min, and 3 MPa of pressure resulted in a maximum flexural strength (FS) of 3.689 MPa and compressive strength (CS) of 4.141 MPa, with an average water absorption (WA) of 0.322 %. Therefore, the mechanical properties of the developed tiles met the desired standard. In conclusion, the mechanical qualities of the tiles were promising, indicating that reusing waste LDPE plastic to create paver tiles presents an appealing option for plastic waste disposal. The composite paver tiles exhibited promising attributes for outdoor applications, such as park pavement and outdoor public spaces, owing to their favorable mechanical properties and low water absorption.

5.
Materials (Basel) ; 17(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612156

RESUMO

Ultrafine hydraulic binder grout injection is a technique utilised for repairing masonry, either to connect sections, seal joints, or fill voids due to its great capacity for penetration and higher mechanical strength than lime grout. In this research, the mechanical properties of ultrafine hydraulic cement grout are analysed considering the influence of the mould material for preparing the specimens and their geometry characteristics in the context of the specifications set out in several international standards. The test campaign to ascertain compressive and flexural strength in different circumstances is supplemented with a physical and chemical characterisation of both binder and fresh and hardened grout. Significant differences in mechanical properties between specimens prepared with absorbent or non-absorbent-water material are found due to the influence of drying shrinkage and decanting binder during the curing process. Furthermore, the slenderness of specimens is presented as an important factor in determining the compressive strength of mixtures.

6.
Materials (Basel) ; 17(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612163

RESUMO

New composites produced with recycled waste are needed to manufacture more sustainable construction materials. This paper aimed to analyze the hygrothermal and mechanical performance of plasterboard with a polymethylhydrosiloxane (PMHS) content, incorporating recycled PET microplastic waste and varying factors such as PMHS dose, homogenization time, and drying temperature after setting. A cube-centered experimental design matrix was performed. The crystal morphology, porosity, fluidity, water absorption, flexural strength, and thermal conductivity of plasterboards were measured. The results showed that incorporating recycled PET microplastics does not produce a significant difference in the absorption and flexural strength of plasterboards. However, the addition of recycled PET reduced the thermal conductivity of plasterboards by around 10%.

7.
Materials (Basel) ; 17(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38591501

RESUMO

The growing demand for composite materials capable of enduring prolonged loads in high-temperature and aggressive environments presents pressing challenges for materials scientists. Ceramic materials composed of silicon carbide largely possess high mechanical strength at a relatively low density, even at elevated temperatures. However, they are inherently brittle in nature, leading to concerns about their ability to fracture. The primary objective of this study was to develop a novel technique for fabricating layered composite materials by incorporating SiC-based ceramics, refractory metals, and their silicides as integral constituents. These layered composites were produced through the liquid-phase siliconization method applied to metal-carbon blanks. Analysis of the microstructure of the resultant materials revealed that when a metal element interacts with molten silicon, it leads to the formation of a layer of metal silicide on the metal's surface. Furthermore, three-point bending tests exhibited an enhancement in the bending strength of the layered composite in comparison to the base silicon carbide ceramics. Additionally, the samples demonstrated a quasi-plastic nature during the process of destruction.

8.
J Prosthodont ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483093

RESUMO

PURPOSE: The purpose of this study was to evaluate the flexural strength (FS), flexural modulus (FM), and fatigue limit (FL) of 3D-printed resin-based polymers and composites and compare them to 3D-printed composites. MATERIALS AND METHODS: A bar-shaped specimen (25 × 2 × 2 mm) was CAD designed according to ISO 4049:2019, and 60 duplicates of the 3D model were nested at a 45-degree angle with the printing platform and 3D-printed with three materials: denture teeth resin (Denture Teeth, Formlabs), temporary crown and bridge resin (Temporary CB, Formlabs), and composite (Flexcera Smile Ultra+, Desktop Health). The 3D model was also imported into a dental CAM software, duplicated 60 times, nested, and milled from a 3D-milled composite puck (Ivotion Denture Teeth, Ivoclar). All specimens were post-processed following the manufacturer's recommendation. The specimens were then subjected to a three-point bending test until failure using a Universal Testing Machine at a crosshead speed of 0.75 mm/min, and FS and FM were calculated. The remaining thirty specimens were tested for Fatigue Limit using the staircase approach starting at 50% FS maximum up to 1.2 M cycles at 10 Hz. The data were analyzed using one-way ANOVA and the Weibull distribution (α = 0.05). RESULTS: The results showed that Ivotion and Flexcera had higher FS (110.3 ± 7.1 MPa and 107.6 ± 6.4 MPa, respectively) and FM (3.3 ± 0.1 GPa and 3.0 ± 0.2 GPa, respectively) compared to the 3D-printed Denture Teeth (FS = 66.4 ± 18.5 MPa and FM = 1.8 ± 0.1 GPa) and Temporary CB (FS = 79.6 ± 12.1 MPa and FM = 2.7 ± 0.4 GPa). Weibull analysis showed that the Ivotion and Flexcera had a more uniform and narrower spatial distribution of defects (m: 27.98 and 29.19) than the printed materials, which had m values of 8.17 and 4.11 for Temporary CB and Denture Teeth, respectively. Although no differences were found in the static properties (FS and FM) between Ivotion and Flexcera, Ivotion presented a higher endurance limit than Flexcera (51.43 vs. 40.95 MPa). The Temporary CB presented 21.08 MPa and Denture Teeth presented 17.80 MPa of endurance limit. CONCLUSIONS: 3D-milled (Ivotion Denture Teeth) and 3D-printed (Flexcera Smile Ultra+) composites outperformed 3D-printed resins (Formlabs Denture Teeth and Temporary Crown & Bridge) in terms of flexural properties and fatigue resistance. 3D-milled (Ivotion) and 3D-printed (Flexcera) composites exhibited similar flexural properties, but 3D-milled composites showed a 25% higher fatigue endurance limit, suggesting improved clinical longevity.

9.
Materials (Basel) ; 17(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473475

RESUMO

It is believed that the use of mortars based on air lime in the construction and renovation of brick buildings has a number of advantages, especially those closely related to the durability and strength of the structure. However, there is still a noticeable difference in the mechanical properties of these materials. This research investigated the mechanical characteristics of a mixed cement-lime mortar with the two most popular proportions of an air lime, cement, and sand mix: 1:1:6 and 1:2:9 (by volume). Mechanical tests were performed on standard and non-standard samples to assess compressive strength, tensile strength, flexural strength, and fracture energy. The obtained results indicate the possibility of using these mixtures in modern masonry construction, as well as in the aspect of sustainable development. Additionally, lime mortar with a higher lime content can be used in non-load-bearing walls and in renovation and repair works.

10.
Materials (Basel) ; 17(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473524

RESUMO

(1) Background: Digital technologies are available for denture base fabrication, but there is a lack of scientific data on the mechanical and chemical properties of the materials produced in this way. Therefore, the aim of this study was to investigate the residual monomer content, flexural strength and microhardness of denture base materials as well as correlations between investigated parameters. (2) Methods: Seven denture base materials were used: one conventional heat cured polymethyl methacrylate, one polyamide, three subtractive manufactured materials and two additive manufactured materials. High-performance liquid chromatography was used to determine residual monomer content and the test was carried out in accordance with the specification ISO No. 20795-1:2013. Flexural strength was also determined according to the specification ISO No. 20795-1:2013. The Vickers method was used to investigate microhardness. A one-way ANOVA with a Bonferroni post-hoc test was used for the statistical analysis. The Pearson correlation test was used for the correlation analysis. (3) Results: There was a statistically significant difference between the values of residual monomer content of the different denture base materials (p < 0.05). Anaxdent pink blank showed the highest value of 3.2% mass fraction, while Polident pink CAD-CAM showed the lowest value of 0.05% mass fraction. The difference between the flexural strength values of the different denture base materials was statistically significant (p < 0.05), with values ranging from 62.57 megapascals (MPa) to 103.33 MPa. The difference between the microhardness values for the different denture base materials was statistically significant (p < 0.05), and the values obtained ranged from 10.61 to 22.86 Vickers hardness number (VHN). A correlation was found between some results for the material properties investigated (p < 0.05). (4) Conclusions: The selection of contemporary digital denture base manufacturing techniques may affect residual monomer content, flexural strength and microhardness but is not the only criterion for achieving favourable properties.

11.
Materials (Basel) ; 17(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473544

RESUMO

The reinforcing fibers in filament winding fiber-reinforced polymer (FFRP) are not arranged in the axial direction; thus, the members are vulnerable to bending and shear stresses. To address the limitations, this study evaluated FRP-concrete composite piles with reinforcing fiber arranged in circumferential directions. In particular, modular pultruded FRP (PFRP) members were fabricated with reinforcing fibers arranged in the axial and circumferential directions. The exterior of the fabricated PFRP members was reinforced with FFRP, and the flexural performance of these members was investigated through flexural strength tests. The results obtained from the flexural tests and flexural-stiffness prediction formula differed by approximately 0.72-1.36 times. A comparison between the results of the flexural test and flexural-strength prediction equation showed an error of approximately 1 to 10%.

12.
Materials (Basel) ; 17(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38473614

RESUMO

Nowadays, yttria (Y3+)-stabilized ZrO2 (Y-TZP) is the most commonly used material in dental prosthetics. Y-TZP dental ceramics are mainly stabilized via the addition of 3 mol% yttrium oxide (Y2O3). These ceramics exhibit excellent mechanical properties, including high flexural strength, fracture toughness, elastic modulus, etc. Some manufacturers have recently introduced a new class of dental materials with multilayer composition with the aim of combining the advantages of adding more or less Y2O3 to the ceramic composition in one Y-TZP material. The flexural strength values of multilayer Y-TZP may vary depending on the dimensions of the specimen, layer distributions, and especially the layer exposed on the maximum tension side, i.e., loading configuration. Although previous studies have examined the flexural strength of separate Y-TZP layers, capturing the flexural strength of multilayer Y-TZP is still challenging. However, one should keep in mind that multilayer flexural strength is important for clinical indications. The objective of this study is to compare the flexural strength of three distinct multilayer translucent Y-TZP materials made up of layers with different Y3+ contents. Rectangular samples (2 mm × 2 mm × 16 mm) were prepared from CAD/CAM discs using the milling machine Programill PM7 (Ivoclar Vivadent AG). Milled bars were tested for flexural strength in a three-point bending test (ISO 6872:2015) using a universal testing machine (Inspekt Duo 5kN; Hegewald & Peschke, Nossen, Germany) at a crosshead speed of 0.5 mm/min. Representative samples of each type of material were selected for quantitative and qualitative analysis of the microstructure. Representative samples of each type of material were selected for structural, mechanical, and microstructural analyses.

13.
Dent Mater ; 40(4): 756-763, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429216

RESUMO

OBJECTIVE: To evaluate the influence of printing orientation on flexural strength (σf) and elastic modulus (E) of different 3D printing dental restorative resins. METHODS: Bar-shaped specimens (n = 20) were fabricated from two SLA-printed resins (FT- Formlabs Temporary, and FP- Formlabs Permanent) and two DLP-printed resins (DFT- Detax Freeprint Temp, and GCT- GC Temporary) using two building orientations (0º and 90º). The 3D-printed structures were aged (14 d) before submitted to three-point bending in 37ºC distilled water at a crosshead speed of 1.0 ± 0.3 mm/min until fracture to calculate the σf and the E values. The fractured surfaces were evaluated using stereomicroscopy and scanning electron microscopy (SEM) following fractography principles. Data were statistically analyzed using two-way ANOVA and Tukey post-hoc (α = 0.001). RESULTS: FP and FT showed significantly higher E values than DFT and GCT, irrespectively of printing orientation (p < 0.001). There was no statistical difference between the building orientations (0º and 90º) for the mean σf and E values for the resin materials evaluated. Fractographic characteristics were similar for the surface fracture from all the materials evaluated, showing typical brittle fracture behavior. SIGNIFICANCE: Printing orientation did not influence of flexural strength and elastic modulus values for the 3D-printed resin structures evaluated. Surface topography was mostly governed by the 3D printer type.


Assuntos
Resinas Compostas , Materiais Dentários , Materiais Dentários/química , Resinas Compostas/química , Teste de Materiais , Resistência à Flexão , Impressão Tridimensional , Propriedades de Superfície
14.
Materials (Basel) ; 17(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38541562

RESUMO

In the pursuit of creating more sustainable and resilient structures, the exploration of construction materials and strengthening methodologies is imperative. Traditional methods of relying on steel for strengthening proved to be uneconomical and unsustainable, prompting the investigation of innovative composites. Fiber-reinforced polymers (FRPs), known for their lightweight and high-strength properties, gained prominence among structural engineers in the 1980s. This period saw the development of novel approaches, such as near-surface mounted and externally bonded reinforcement, for strengthening of concrete structures using FRPs. In recent decades, additional methods, including surface curvilinearization and external prestressing, have been discovered, demonstrating significant additional benefits. While these techniques have shown the enhanced performance, their full potential remains untapped. This article presents a comprehensive review of current approaches employed in the fortification of reinforced cement concrete structures using FRPs. It concludes by identifying key areas that warrant in-depth research to establish a sustainable methodology for structural strengthening, positioning FRPs as an effective replacement for conventional retrofitting materials. This review aims to contribute to the ongoing discourse on modern structural strengthening strategies, highlight the properties of FRPs, and propose avenues for future research in this dynamic field.

15.
Dent Mater J ; 43(2): 294-302, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38432949

RESUMO

This study aimed to clarify the effects of multiple firings on the translucency, crystal structure, and mechanical strength of highly translucent zirconia. Four types of highly translucent zirconia (LAVA Esthetic, LAVA Plus, KATANA Zirconia STML, and KATANA Zirconia HTML) were fired three times at three different temperatures, and the translucency, crystal structure, and flexural strength were evaluated before and after firing. The translucency was statistically compared using repeated-measures analysis of variance; the zirconia phase composition was assessed using X-ray diffraction followed by Rietveld analysis; and the biaxial flexural strength was assessed using Weibull analysis. The translucency of LAVA Esthetic and KATANA Zirconia HTML decreased significantly after firing, and the crystal composition of LAVA Plus and KATANA Zirconia HTML changed after multiple firings, whereas multiple firings did not affect the biaxial flexural strength of any samples. Thus, multiple firings may affect the optical properties of highly translucent zirconia.


Assuntos
Materiais Dentários , Resistência à Flexão , Materiais Dentários/química , Teste de Materiais , Zircônio/química , Cerâmica/química , Propriedades de Superfície
16.
J Adv Prosthodont ; 16(1): 25-37, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38455679

RESUMO

PURPOSE: To investigate the effect of sintering programs and surface treatments on surface properties, phase transformation and flexural strength of monolithic zirconia. MATERIALS AND METHODS: Zirconia specimens were sintered using three distinct sintering programs [classic (C), speed (S), and superspeed (SS)] (n = 56, each). One sample from each group underwent scanning electron microscopy (SEM) and grain size analysis following sintering. Remaining samples were divided into five subgroups (n = 11) based on the surface treatments: control (CL), polish (P), glaze (G), grind + polish (GP), and grind + glaze (GG). One sample from each subgroup underwent SEM analysis. Remaining samples were thermally aged. Monoclinic phase volume, surface roughness, and three-point flexural strength were measured. Monoclinic phase volume and surface roughness were analyzed by Kruskal-Wallis and Dunn tests. Flexural strength was analyzed by two-way ANOVA and Weibull analysis. The relationships among the groups were analyzed using Spearman's correlation analysis. RESULTS: Sintering program, surface treatment, and sintering × surface treatment (P ≤ .010) affected the monoclinic phase volume, whereas the type of surface treatment and sintering × surface treatment affected the surface roughness (P < .001). Type of sintering program or surface treatment did not affect the flexural strength. Weibull analysis revealed no significant differences between the m and σo values. Monoclinic phase volume was positively correlated with surface roughness in the SGG and SSP groups. CONCLUSION: After sintering monolithic zirconia in each of the three sintering programs, each of the surface treatments can be used. However, for surface quality and aging resistance, G or GG can be recommended as a surface finishing method.

17.
BMC Oral Health ; 24(1): 357, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509542

RESUMO

BACKGROUND: This study compared the impact of thermal cycling on the flexural strength of denture-base materials produced through conventional and digital methods, using both subtractive and additive approaches. METHODS: In total, 60 rectangular specimens were fabricated with specific dimensions for flexural strength tests. The dimensions were set according to the International Organization for Standardization (ISO) guideline 20795-1:2013 as 64 × 10 × 3.3 ± 0.2 mm. Specimens from each material group were divided into two subgroups (thermal cycled or nonthermal cycled, n = 10/group). We used distinct methods to produce three different denture-base materials: Ivobase (IB), which is a computer-aided-design/computer-aided-manufacturing-type milled pre-polymerized polymethyl methacrylate resin disc; Formlabs (FL), a 3D-printed denture-base resin; and Meliodent (MD), a conventional heat-polymerized acrylic. Flexural strength tests were performed on half of the samples without a thermal-cycle procedure, and the other half were tested after a thermal cycle. The data were analyzed using a two-way analysis of variance and a post hoc Tukey test (α = 0.05). RESULTS: Based on the results of flexural-strength testing, the ranking was as follows: FL > IB > MD. The effect of thermal aging was statistically significant for the FL and IB bases, but not for the MD base. CONCLUSIONS: Digitally produced denture bases exhibited superior flexural strength compared with conventionally manufactured bases. Although thermal cycling reduced flexural strength in all groups, the decrease was not statistically significant in the heat-polymerized acrylic group.


Assuntos
Resistência à Flexão , Temperatura Alta , Humanos , Resinas Acrílicas , Bases de Dentadura , Teste de Materiais , Polimetil Metacrilato , Propriedades de Superfície
18.
Materials (Basel) ; 17(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38473585

RESUMO

One therapeutical alternative in the treatment of functional disorders is the use of printed oral splints. The mechanical properties of these materials are highly essential to their clinical effectiveness, and their performance may vary depending on factors such as cleaning, post-polymerization, or their orientation during construction. The objective of this in vitro investigation is to evaluate the effectiveness of the selected materials in terms of their biaxial flexural strength in relation to the criteria listed above. Splint materials were used in the printing of 720 discs. The printing process was carried out in different orientations in relation to the building platform. Either an automatic or manual cleaning process was performed on the samples. For post-polymerization, either an LED or Xenon light was utilized. A piston-on-three-ball test was used to measure the biaxial flexural strength (BFS) of the materials after they were stored in water for either 24 h or 60 days. The homogeneity of the data was controlled by employing the Levene method, and the differences between the groups were analyzed using the ANOVA and Bonferroni methods. After being stored for twenty-four hours, the mean BFS ranged anywhere from 79 MPa to 157 MPa. Following a period of sixty hours, the BFS exhibited a substantial drop and revealed values that ranged from 72 to 127 MPa. There was no significant difference that could be identified between the materials or between the various cleaning processes. The results of post-polymerization showed that the LED light produced higher means than the Xenon light did. In terms of position, the mean values varied greatly, with 0°'s mean value being 101 MPa, 45°'s mean value being 102 MPa, and 90°'s mean value being 115 MPa. The use of a build orientation of 90° and post-polymerization with LED light resulted in significantly increased biaxial flexural strength. According to this study, this design should be implemented in order to ensure that splint materials have the highest possible strength.

19.
J Contemp Dent Pract ; 25(2): 191-195, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38514419

RESUMO

AIM: To evaluate and compare the fracture toughness and flexural strength of four different core build-up materials. MATERIALS AND METHODS: A total of 60 samples were divided into four groups (n = 15) group I: dual cure composite resin reinforced with zirconia particles (Luxacore Z), group II: light cure composite resin (Lumiglass DeepCure), group III: zirconia reinforced glass ionomer cement (GIC) (Zirconomer Improved), and group IV: chemically cure composite resin (Self Comp) respectively. All the core build-up materials were manipulated according to the manufacturer's instructions and poured into the mold. A universal testing machine applied a central load to the specimen in a 3-point bending mode. Fracture of the specimen was identified and the reading was recorded by the universal testing machine. The data were analyzed statistically using one-way analysis of variance (ANOVA) and then compared. RESULTS: Group I showed the highest flexural strength (48.65 MPa) among all the groups while group IV showed the lowest flexural strength (17.90 MPa). Group I showed the highest fracture toughness (99.12 MPa) among all the groups while group IV showed the lowest fracture toughness (36.41 MPa.cm-0.5). When mean flexural strength and fracture toughness values of all four groups were compared by using one-way ANOVA, the compared data was highly significant. CONCLUSION: Based on the findings of this study, dual cure composite resin was the material of choice in terms of flexural strength and fracture toughness for core build-up material followed by light cure composite resin. CLINICAL SIGNIFICANCE: The core buildup material serves to strengthen the tooth structure, allowing it to withstand the forces of chewing and preventing the risk of tooth fractures. This material is essential in restoring damaged or decayed teeth, as it provides a stable foundation for further dental work. By reinforcing the tooth structure, the core buildup material ensures that the tooth can function properly and remain healthy for years to come. How to cite this article: Nakade P, Thaore S, Bangar B, et al. Comparative Evaluation of Fracture Toughness and Flexural Strength of Four Different Core Build-up Materials: An In Vitro Study. J Contemp Dent Pract 2024;25(2):191-195.


Assuntos
Resistência à Flexão , Fraturas Ósseas , Humanos , Teste de Materiais , Resinas Compostas/química , Zircônio
20.
J Mech Behav Biomed Mater ; 152: 106458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364445

RESUMO

OBJECTIVES: To investigate the influence of material and printing orientation on wear resistance and flexural properties of one low force SLA- and two DLP-printed splint materials and to compare these 3D-printed splints to a subtractively manufactured splint material. METHODS: Two DLP-printed (V-Print splint, LuxaPrint Ortho Plus) and one low force SLA-printed (Dental LT Clear) material, where specimens were printed in three printing orientations (0°, 45°, 90°), were investigated. In addition, one milled splint material (Zirlux Splint Transparent) was examined. A total of 160 specimens were produced for both test series. The two-body wear test was performed in a chewing simulator (80'000 cycles at 50 N with 5-55 °C thermocycling). Steatite balls were used as antagonists. The wear pattern was analyzed with a 3D digital microscope in terms of maximum vertical intrusion depth (mm) and total volume loss (mm³). The flexural properties were investigated by three-point bending in accordance with ISO 20795-1: 2013 (denture base polymers). The flexural strength (MPa) and the flexural modulus (MPa) were measured. Two-way ANOVA was performed to investigate the effects of the two independent variables material and printing orientation for the three 3D-printed materials. The comparison of the printing orientations within one material was carried out with one-way ANOVA with post-hoc Tukey tests. RESULTS: Two-way ANOVA revealed that wear and flexural properties are highly dependent on the 3D-printed material (p < 0.001). Across groups, a significant effect was observed for wear depth (p = 0.031) and wear volume (p = 0.044) with regard to printing orientation but this was not found for flexural strength (p = 0.080) and flexural modulus (p = 0.136). One-way ANOVA showed that both DLP-printed groups showed no significant differences within the printing orientations in terms of wear and flexural properties. Dental LT Clear showed that 90° oriented specimens had higher flexural strength than 0° oriented ones (p < 0.001) and 45° oriented specimens also showed higher values than 0° ones (p = 0.038). No significant differences were observed within the printing orientations for flexural modulus and wear behaviour within this group. T-tests showed that the milled splints exhibited statistically higher wear resistance and flexural properties compared to all three 3D-printed splint materials (p < 0.001) and that highly significant differences were found between the 3D-printed splint materials for both test series. CONCLUSION: Within the limitations of this in vitro study, it can be stated that wear behaviour and flexural properties are highly dependent on the 3D-printed material itself. Currently, milled splints exhibit higher wear resistance and flexural properties compared to 3D-printed splint materials. The printing orientation has a minor influence on the properties investigated. Nevertheless, two-way ANOVA also showed a significant influence of printing orientation in the wear test across groups and one-way ANOVA detected significant effects for SLA material in terms of flexural strength, with printing in 90° showing the highest flexural strength. Therefore, anisotropy was found in SLA material, but it can be limited with the employed printing parameters. Both DLP-printed materials showed no significant difference within the printing orientation.


Assuntos
Resistência à Flexão , Gastrópodes , Animais , Contenções , Análise de Variância , Anisotropia , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...